
The Niagara FrameworkThe Niagara FrameworkThe Niagara FrameworkThe Niagara Framework

Control System Interoperability with Seamless
Intranet/Internet Enterprise Connectivity

©Copyright1998Tridium,Inc.,AllRightsReserved

Tridium,Inc.
3951WesterreParkway
Suite350
Richmond,Virginia23233
(804)747-4771
http://www.tridium.com

ErnieAllen, Technical ServicesManager
JohnBishop, RegionalManager



2

Copyright Notice: The software described herein is furnished under a license agreement and may be used only in
accordance with the terms of the agreement.

© Copyright 1998 Tridium, Inc. All rights reserved.

This document may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form without prior written consent from Tridium, Inc., 3951 Westerre Parkway, Suite 350,
Richmond, Virginia 23233.

The confidential information contained in this document is provided solely for use by Tridium employees, licensees, and
system owners; and is not to be released to, or reproduced for, anyone else; neither is it to be used for reproduction of
this Control System or any of its components.

All rights to revise designs described herein are reserved. While every effort has been made to assure the accuracy of
this document, Tridium shall not be held responsible for damages, including consequential damages, arising from the
application of the information given herein. The information in this document is subject to change without notice.

The release described in this document may be protected by one of more U.S. patents, foreign patents, or pending
applications.

Trademark Notices: Microsoft and Windows are registered trademarks, and Windows 95, Windows NT, and Internet
Explorer are trademarks of Microsoft Corporation. Java and other Java-based names are trademarks of Sun
Microsystems Inc. and refer to Sun’s family of Java-branded technologies. Communicator and Navigator are registered
trademarks of Netscape Communications Corporation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered
trademarks of Echelon Corporation. Tridium Niagara, the Niagara Framework, WorkPlace Pro, Web Supervisor, and
JACE-NP are trademarks of Tridium Inc. All other product names and services mentioned in this publication that are
known to be trademarks, registered trademarks, or service marks have been appropriately capitalized and are the
property of their respective owners.



3

The Niagara Framework
Control System Interoperability with
Seamless Intranet/Internet Enterprise
Connectivity

Introduction

Tridium, Inc. designs and markets Java-based automation
products and services with built-in Internet connectivity to a
broad range of distribution partners in the building
automation, energy services, power/utility, and industrial
sectors. Tridium’s Niagara Framework brings together the
ongoing computerization of control applications under the
umbrella of a single, integrated system architecture. The
suite of Niagara component software applications supports
true plug-and-play, multi-vendor interoperability, resulting in
significantly lower automation and information infrastructure
costs and was designed from day one to take advantage of
the power of the Internet.

From an engineering perspective, the Framework is built on
an enhanced JavaBean object model that solves real world
problems associated with a distributed real-time control
system. As such, the Niagara architecture provides pre-
built, pre-tested, tried-and-true building blocks that can be
used to create and modify control solutions quickly. These
components are extensible. They can be used as-is for
meeting specific automation requirements or new
components can be easily created using Niagara’s
integrated application development environment.

From a solutions perspective, the main reason that
automation and information infrastructures become
obsolete is not that they wear out, they simply fail to adapt
to the changing environment around them and do not
integrate with new applications and evolving technologies.
The Niagara architecture provides an open component
framework, which makes it possible to build next-
generation, multi-vendor, interoperable control systems that
satisfy the need for Internet openness, while maintaining
the determinism and integrity required for real-time control.
As a result, the Framework provides a supportive
environment in which the infrastructure is allowed to adapt,
where multi-vendor systems integrate easily, and one that
reduces overlap, rework, and premature obsolescence.

Contents

Introduction

Trends in the Control
Systems Market

The Problem with
Integration

The Niagara Framework
Solution

The Evolution of the
Niagara Component
Architecture

Extending the Framework

Sample Configurations

Customer Benefits

Glossary of Terms

With Sidebars On:

• The Open Systems
Movement

• Control System
Integration Today

• Device Communications
Standards

• Component Software

• Enterprise Component
Software Standards



4

From an end-user perspective, the Niagara architecture puts the user in control of their
facilities, letting them choose the products they want, with the features they need, from the
vendors who perform to their expectations. The Framework allows end-users to quickly
reconfigure their control systems dynamically over the Internet in response to changing needs.
For the first time, end-users do not have to settle for a compromise solution selected from
traditional, one-size-fits-all automation products that never fully solve unique control problems.

Primary Design Considerations. Two primary design accomplishments allow for such an
innovative solution. First, each Niagara software component is a self-contained unit with
specific functionality and a well-defined interface to the Framework. This means that
applications built from components can be trusted and they allow unlimited, simple extensions
and modifications. Moreover, due to their well-defined interface, components can
communicate with one another, readily pass information, and changes can be made while the
control application is running. The component framework can be used to express a variety of
constructs that represent physical devices, controllers, and primitive control applications.
These include, but are not limited to LonMark profiles, BACnet objects, and legacy control
points. This protects the end-user’s investment by allowing legacy systems to be brought
forward, where they can readily adopt new standards, solutions, and applications.

The second design innovation is that of embedding open Internet protocols at the controller
level. This feature allows the Niagara architecture to provide a single point of connection to
both the Internet and the real-time control system. By doing so, the Framework allows access
for multiple sites from virtually countless users at a cost structure that is remarkably low. The
end-user finally has a solution that makes it possible for anyone with appropriate security, from
anywhere, at any time to interact with smart devices embedded in building automation,
power/utility, and industrial control networks through a standard Internet browser.

Tridium’s key business objective is to leverage the strengths of many alliance partners to
promote vendor-independent, robust control solutions that integrate seamlessly with a wide
variety of business and information applications in a market where traditional means of
distribution and support are changing. The goal is to provide innovative solutions for the way
control systems are built and distributed by empowering customers and putting them in charge
of their product and service choices. By striking strategic alliances with open-minded partners,
interoperability and ubiquity are ensured. By building the design on emerging protocol
standards, then embedding that solution at the controller level, Internet openness becomes an
inherent part of Tridium’s distribution, deployment, and support strategies.

Customer Benefits. The benefits of adopting the Niagara Framework as a complete and
comprehensive solution include: 1) it provides end-users the openness they demand in
controlling their facilities; 2) it provides System Integrators a complete set of tools and services
to assist them in the integration process; 3) it allows true integration and support of both the
control environment and the information domain; and, 4) it is a unique and effective solution
that is appropriate in virtually any segment of the automation marketplace.

Overview. This paper is a non-technical overview of the Niagara Framework. It is written for
businesspersons that may be evaluating the Framework as their integration solution. It is
written as a general introduction to the enabling technologies on which Niagara is founded.
The sidebars and glossary provide background information to support the general discussion
and to give the reader a more thorough understanding of related topics.



5

Trends in the Control Systems Market

Technology enablers are creating a convergence toward a
common system architecture for different types of control.

Recent general acceptance of building automation and device
communications standards such as BACnet and LonWorks
permit, for the first time, seamless interoperability between new
building automation services from a variety of suppliers.
Concurrently, the recent emergence of enterprise component
software standards such as CORBA (Common Object Request
Broker Architecture), DCOM (Distributed Component Object
Model), and XML (eXtensible Markup Language) have created an
infrastructure that allows information to be shared between
building automation systems (BAS) and enterprise information
systems (EIS). Finally, development of Internet and Java
computing standards continue to permit rapid development of
portable control and information management applications for
multi-platform Internet environments.

Building automation systems automate the many services
required to successfully operate and manage facilities including
environmental control, fire and life safety, lighting, energy
management, and security access control. These services have
traditionally been provided as independent, standalone systems
by multiple, proprietary vendors. It is very common for a single
hospital facility to have 2-5 independent automation systems,
while a national chain might have ten or more systems throughout
the country. While improvements in systems integration have
occurred over the past ten years, only recently has it become cost
effective and, in some cases, technically possible for a user to
deploy an easily portable and fully integrated facility management
solution.

Enterprise information management systems have rarely been
linked to the BAS due to differences in communications
standards, divisions in reporting responsibilities, or concerns
surrounding data integrity and system security. However, much of
the BAS data eventually ends up in the enterprise database
through a manual process. With the advent of power deregulation
and the widening of services provided by facilities management
companies, large users of the EIS are expressing the desire to
automate the retrieval of data from the BAS and have the two
systems integrate more seamlessly.

Internet-enabled user interfaces have become quite popular in
recent years, but heavy investment by traditional BAS companies
in proprietary software has slowed the availability of cost effective,
multi-user, and multi-platform solutions. Most of the existing BAS
systems were not originally designed to take advantage of the
Internet’s portability. These systems require that a full set of BAS
software reside on each computer that has access to the system.
However, with Java software embedded at the controller level, a
limitless number of users can access the control system over the

The Open Systems
Movement

One of the first applications of
device communications was
that of a thermostat relating a
setpoint and process
feedback by means of
mechanical action.
Pneumatic devices of the 50’s
and 60’s used a 3 to 15
pound per square inch (PSI)
signal as the standard
protocol to communicate
setpoint and process
feedback to heating and
cooling equipment often
manufactured by different
vendors.

When electric devices took
over the market in the 70’s,
the 4-20 mA signal became
the open protocol standard.
As microprocessor-based
devices became popular in
the 80’s, each manufacturer,
without regard to other
manufacturers, developed
devices that used digital
signals to communicate.

In the 90’s, customers
demanded that devices
produced by different
manufacturers actually work
together. As a result,
manufacturers began to
publish their communications
protocols and independent
associations evolved to refine
and manage these published
standards.

Today there are several
industrial protocols that are
published and managed by
independent associations.
These include DeviceNet,
which is supported by more
than 270 manufacturers as



6

Internet at no additional cost per seat.

Traditional channels of distribution are changing in the
commercial controls marketplace.

As building automation and device communications standards
have created a momentum in the industry to reduce dependence
on proprietary building automation systems, independent System
Integrators are replacing the traditional BAS manufacturer branch
structure as the dominant distribution channel. With access to
multiple vendors’ products and a reluctance to commit to a single
vendor, System Integrators require an independent set of tools
and services to assist them in the integration process.

Finally, the deregulation of the utility industry is contributing to the
unheralded change in the distribution channels of the commercial
controls market. As power and gas companies look for new
growth opportunities, many are choosing to become Energy
Services Providers, a service once reserved for traditional BAS
manufacturers. With the varied needs of typical utility customers,
combined with a wide range of legacy systems, utility companies
are looking to provide vendor-neutral solutions.

The Problem with Integration

Building owners today are faced with an ever-increasing number
of intelligent systems that are being installed in their buildings.
These systems are not limited to HVAC systems. They include
lighting systems, alarm and security devices, medical safety
equipment, power metering, and more. It is no longer acceptable
to rely on a single manufacturer for field bus devices, connected
by an area controller, and accessed through proprietary operator
interface software. Furthermore, building owners are not willing to
replace existing systems in order to adopt new standards.
Enhancements to automation systems must easily integrate
legacy products and move their functionality forward.

Today’s microprocessor-based systems offer tremendous benefits
in terms of precise control and data gathering capability, but these
benefits present challenges too. The greatest challenge
presented by such a selection of affordable and impressive
devices is that of integration. Not only do traditional proprietary
controls fall short of offering customers the openness they
demand in controlling their facilities, but even the network
management services and tools that have recently promised open
integration of multi-vendor devices reek of propriety.

System Integrators are positioning themselves to support multi-
vendor products in an effort to provide best-of-breed solutions for
their customers. Because of their reluctance to commit to a single
vendor, System Integrators are turning to vendors that provide
systems designed around standard protocols. But, the problem
with most BACnet and LonWorks solutions is that although they
deliver on the promise of open systems integration, they are

members of the Open
DeviceNet Vendor
Association (ODVA). In
addition, the Fieldbus
Foundation has taken the
lead in managing the
development of a single
international, interoperable
fieldbus standard. The
Fieldbus Foundation was
established in September
1994 by a merger of WorldFIP
North America and the
Interoperable Systems Project
(ISP) and it consists of nearly
120 of the world's leading
suppliers and users of
process control and
manufacturing automation
products.

In the commercial controls
market, there are two
protocols that are considered
to be the leading open
standards. These are
BACnet and LonWorks. The
LonMark Interoperability
Association was founded in
August 1994 by 36
companies and is an
independent organization of
over 200 members including
virtually every major controls
company in the BAS industry
worldwide.

Developed under the
auspices of the American
Society of Heating
Refrigeration and Air
Conditioning Engineers
(ASHRAE), BACnet is a data
communications protocol for
BAS networks and is now an
American national standard
and a European pre-standard,
with the potential of becoming
a global standard.



7

designed around proprietary network management tools.

Integration tools offered in the building controls market today do
not provide the complete and comprehensive solution that System
Integrators are looking for to support their customers. A truly
comprehensive solution must combine common network
management services for both open standards devices (BACnet
and LonWorks) and legacy products with a full-featured
environment that blends the control system seamlessly with the
enterprise information system.

In addition to network management support for both open
standards devices and legacy products, a comprehensive solution
must include:

• Full graphical user interface.

• Synchronization of controller databases and database
storage and backup.

• Password protected access.

• Data collection and enterprise-level information exchange.

• Synchronization of global time functions and central
scheduling.

• Alarm processing and routing.

• Extensive support for all standard energy management
functions.

• Customization for non-standard control applications.

The Niagara Framework solves the many problems associated
with interoperable systems being implemented with today’s device
communications standards. By embedding the network
management function at the controller level and combining that
with Internet connectivity, the Niagara Framework provides a
solution that allows not only access, but also modification of
control system parameters from any Internet connection. This is
combined with a feature-rich desktop software suite that includes
an extensive library of applications and protocol drivers, network
management tools, database administration functionality, and a
graphical real-time control system user interface that finally
delivers to building owners the cost-effective and functional
solution to the problem of integration.

Control System
Integration Today

Open protocol and standard
protocol are terms often used
to discuss two very different
methods of achieving
interoperability. Open
protocol means that the
communications language,
which is typically proprietary,
used to exchange information
between microprocessor-
based devices is published
and openly available. This
makes it possible to develop
an interface or gateway to
products supporting that
protocol. The difficulty with
gateways, though, is that they
represent bottlenecks that can
adversely affect the ability of
systems to share data.

Standard protocols, on the
other hand, refer to
communications methodology
that is developed through a
public and cooperative
process, resulting in a non-
proprietary language that all
manufacturers have agreed to
equally. Standard protocols
allow products developed by
different manufacturers to
communicate without the
need for a gateway, which
can lead to true
interoperability.



8

The Niagara Framework Solution

The Niagara software suite implements a highly efficient
adaptation of the JavaBean component software model and
Internet technologies to provide customers with true
interoperability across a wide range of automation products. As a
subset of the complete Framework, the Niagara object model can
be used to integrate a wide range of physical devices, controllers,
and primitive control applications including LonMark profiles,
BACnet objects, and legacy control points. The architecture
supports future enhancements by allowing legacy systems to be
brought forward, where they can readily adopt new standards,
solutions, and applications.

Business Today

Today, most companies have overly complex automation and
information technology infrastructures that are expensive to
manage and maintain. These systems are typically closed and
proprietary, which makes them difficult to operate and virtually
impossible to enhance. The complexity and inefficiency of these
systems accounts for the high cost of infrastructure support –
identified to be as much as 80 percent of the total cost of the
automation and information technology.

Historically, the building automation, energy services, industrial
automation, and utility industries have been distinct businesses
supported by proprietary, standalone products that have made
integration very difficult. But, technology is changing the
fundamental nature of these standalone products, making them
parts of larger systems with common open system architecture.
Open industry standards are imposing order on these multi-
vendor systems and making interoperability possible. The control
system market is on the cusp of a major technology cycle as
vendors move to adopt the openness of these enabling
technologies.

The older monolithic systems supplied by single vendors are
being replaced by automation and information solutions
developed to open industry standards, by strategic alliances, and
through partnerships and collaborations. As a result of this
strategic partnering, Tridium is leveraging the critical capabilities of
each partner, increasing the flow of innovation and improving
responsiveness to market changes and shifts in technology.
These changes are being driven by the need for rapid application
development, enterprise integration, and secure network-centric
applications – capabilities nearly impossible to provide in a world
of proprietary products and protocols.

The Nature of the Solution

The primary goals of the Niagara Framework are to provide
solutions to several key issues that continue to plague the control

Device
Communications
Standards

Device communications
standards such as BACnet
and LonWorks are becoming
widely accepted in the BAS
community and are, for the
first time, permitting seamless
interoperability between new
BAS services from multiple
vendors.

BACnet. Building
Automation and Control
Networks

BACnet is the ASHRAE/ANSI
Standard 135-1995 that was
adopted in August 1995 as
the data communications
protocol for computer
equipment used for
monitoring and control of
HVACR equipment and other
building systems. This
protocol models each building
automation and control
computer as a collection of
data structures called objects,
the properties of which
represent various aspects of
the hardware, software, and
operation of the device.
These objects provide a
means of identifying and
accessing information without
requiring knowledge of the
details of the device's internal
design or configuration.

LON. Local Operating
Network

LON is an acronym coined by
Echelon Corporation and
refers to an intelligent control
network that facilitates



9

systems industry. These include:

• Successful integration of multi-vendor building automation
products.

• Seamless integration of BAS data with enterprise information
systems.

• Ready and secure access to multi-site, multi-user, and multi-
platform control systems that take advantage of cost effective,
Internet-based user interfaces anywhere in a global
organization.

• A comprehensive, object-oriented solution that supports rapid
application development. One that integrates the entire
software development process from planning and analysis,
through design, construction, and maintenance.

Tridium's approach to automation technology embraces many
industry standards to achieve openness and integration.
However, open standards alone are not sufficient for a distributed
control system environment. There is also a critical need to
protect the integrity and determinism required for real-time control.

System performance in the control domain must be deterministic.
In other words, functions must occur exactly the same way and at
exactly the same speed every time they are executed. For
example, the end-user must have guaranteed delivery of an alarm
within a specific time. Systems operating in the control domain
must be physically robust, with the ability to support redundant
components. They must also be error-tolerant to protect against
operator error. For instance, if the operator enters a setpoint that
is out of the allowed range, it is refused.

Tridium has developed a unique approach and implementation
that provides a multi-vendor, interoperable control system that
satisfies the need for Internet openness, while maintaining the
determinism and integrity required for real-time control. The
Niagara Framework meets these demands by partitioning the
open Internet environment and the deterministic real-time control
environment, providing single point access to both the Internet
and the real-time control system from any Java-enabled browser.

The Niagara Framework is based solely on the Java computing
model to insure deterministic control interoperability of software
components and portability to all control and server platforms. It
also includes special real-time drivers to integrate intelligent
embedded devices over multiple field bus communications
protocols into a common development and deployment
environment that enables interactive and incremental
customization in a manner that suits the skill level of the user.

Contrary to the control domain, the information domain is data-
centric. It is only concerned with data and the information that can
be derived from that data. It is a transaction-processing
environment, where files are updated over the Internet as new

communications between a
group of devices that sense,
monitor, communicate, and
control. LON networks are
being used today in various
market segments including
building automation, industrial
automation, power/utility
automation, and
transportation. Common
applications include HVAC
systems, lighting systems,
alarm and security devices,
medical safety equipment,
power metering, load
management, and so on.

There are a variety of LON-
related terms that are used
and confused within the
industry today. These
include:

LonMark. Refers to the mark
signifying that a product has
met LonMark guidelines that
allow it to interoperate with
other LonMark devices on a
LON. LonMark certification is
granted through the LonMark
Interoperability Association.

LonTalk. Refers to Echelon’s
open-architecture
communications protocol
used by all LonWorks-based
devices. The LonTalk
protocol implements the entire
seven layers of the OSI model
using a mixture of hardware
and firmware on a device
known as a Neuron chip
developed by Echelon.

LonWorks. Refers to the
collective hardware and
software technology
developed by Echelon to
provide an off-the-shelf, peer-
to-peer networking technology
platform for designing and
implementing interoperable
control networks.



10

data is collected and information is displayed as queries are
made. These activities do not usually happen in real-time, but are
more batch oriented.

The information domain emphasizes audit trails for tracking
changes in data, the time they were made, and the person who
made them. Security features, such as firewalls and powerful
encryption and authentication techniques, are designed to
safeguard the information and protect against unauthorized
access.

The information domain does not require Java portability. It does,
however, require control system connectivity to many non-Java
legacy applications. The Niagara Framework makes extensive
use of enterprise-level standards and other industry standards to
communicate control system information to the enterprise legacy
applications, which use non-Java object models. For example,
with the Framework, the end-user can monitor manufacturing
plant energy use and cost, provide direct control of the equipment,
and pass energy cost data directly to the enterprise-level cost
accounting system.

The dynamic, object-oriented nature of the Niagara solution allows
the creation of high-value, complex applications easier and faster
than traditional ‘compile and load’ systems. It allows the user to
create control logic, test it in real-time, and make incremental
modifications very quickly. With the ability to implement and test
new control sequences swiftly, the user can go through several
iterations producing finely tuned applications that satisfy
specialized requirements in less time.

The Niagara Solution

A new set of technological enablers has the potential to simplify
the automation and information architecture across the entire
enterprise. New system solutions powered by this flexible
enabling technology provide companies with an opportunity to
significantly reduce their infrastructure costs. Combined with the
benefits of architectural simplification and application
interoperability, these improvements are positioning participating
companies to better face escalating global competition, more
demanding customers, and accelerating technological changes.

It is important to note that the same technological enablers that
promise to simplify the infrastructure, reduce its cost, and make it
truly interoperable are creating a convergence toward a common
architecture for different types of automation and information
management systems. Technological convergence is breaking
down barriers between different industries and driving them
together, particularity those based on electronics and information
technology.

The Niagara Framework is the control systems industry’s first
software technology to integrate BACnet, LonWorks, and various
Internet standards into a common object model application
environment embedded at the controller level and supported by a

Component Software

What is a component? A
component is a reusable
software building block. It is a
pre-built block of
encapsulated application
code that can be combined
with other components and
‘fresh’ code to form an
application, which dwells
within a container. Containers
provide an application context
for the collection of
components – they provide
the management and control
services needed by the
components to execute. In
real terms, containers provide
access to operating system
processes (threads) in which
to execute the component.

A component model defines
the basic architecture of a
component. It defines a set of
rules that are used in
developing software modules
that specify how the
component is to interface with
its container and other
components. The goal of a
component model is to
provide for rapid development
of reusable software modules
in such a way that
components developed by
multiple vendors, with various
application development tools
and runtime environments,
running on different computer
platforms, can assemble them
into applications without the
need to recompile.

Components come in various
sizes. Client components are
typically executed within
some type of visual container
and are relatively small. An
example of a client



11

standard Web browser interface. The Framework includes
integrated network management tools to support System
Integrators in planning, designing, configuration, installation, and
maintenance of BACnet, LonWorks, Internet, and various other
system networks.

The Niagara architecture is very scalable. In its minimum
configuration, it can support a control system for a small building
running a network of BACnet and LonWorks devices connected to
a single Niagara JACE controller on the same field bus. The
JACE controller is a Java Virtual Machine (JVM) that provides the
environment to manage and run the control system database with
field bus and enterprise LAN connectivity. Since the station
database is composed of Java objects, it can easily run on
multiple platforms ranging from a network computer that supports
embedded systems to a desktop server platform that integrates
multiple systems.

Being highly scalable and multi-platform, the Niagara solution can
also be configured to supervise a network of JACE controllers
connected over Ethernet and can support unlimited users
remotely connected over the Internet. For corporate customers,
the Niagara Framework can be configured to integrate the
automation system with the enterprise information infrastructure
and/or the industrial and power system architectures.

Because the Niagara Framework is based on the JavaBean
component software standard and the Internet, its cost structure is
remarkably low. Not only are multi-user Niagara solutions
competitive with today’s proprietary single-user BAS workstation
packages, there is no extra cost for adding more users. With
typical Windows-based solutions there is additional cost for each
new operator workstation.

Niagara Components

The Niagara architecture is a suite of software built on the
JavaBean object model, enhanced to solve real world problems
associated with a distributed real-time control system. The core of
the architecture is a flexible framework designed to integrate
heterogeneous devices and protocols into a common distributed
infrastructure using plug-and-play software components.

Out of the box, Niagara may be used to implement widely diverse
building automation solutions. Niagara fully supports BACnet and
LonWorks as well as highly flexible objects for alarming,
scheduling, logging, and Web access.

In addition, the Niagara Framework may be used to create
innovative solutions for other vertical markets. As a total,
integrated solution for generic distributed control systems, Niagara
provides a proven foundation on which to build new applications.
Moreover, solutions created with the Niagara Framework are
guaranteed to interoperate with Framework applications from
other vertical markets.

component may be a simple
graphical control like a button.
Server components, on the
other hand, are application
components that run on a
server and they can be rather
large and complex. For
instance, a database
management component
contains database requests.
Multiple database clients
submit their requests
concurrently and rely on the
container to process the
transactions. From simple to
complex, components provide
a standard interface that
enables other parts of the
application to invoke its
functions and access the data
it contains.

Enterprise
Component Software
Standards

During the last few years of
the twentieth century,
technology on the shop floor
of competitive manufacturers
has advanced by leaps and
bounds. New concepts in
manufacturing have
revolutionized the way many
manufacturers operate.
Computerization in the
manufacturing environment
and in the manufacturing
process has created a
revolution where on-line
transaction processing
(OLTP) has become a familiar
phrase, promising new levels
of efficiency. The need to
integrate the technology of the
shop floor with advanced
Enterprise Resource Planning
(ERP) systems is bringing
productivity to levels
undreamed of only a few



12

The Niagara Object Model
The foundation of the Niagara architecture is its object model.
The Niagara object model is an enhanced version of the standard
JavaBean object model. The model has been extended to deal
effectively with the challenges presented by a distributed real-time
control system.

Nodes. All Niagara objects derive from a common base class:
Node. A node is the basic building block of the control system
and it has all of the fundamental characteristics of a JavaBean – it
has a set of properties it exposes, a set of methods that it allows
other objects to call, and a set of events that it can fire. Examples
of nodes include Analog Output, Schedule, LonWorks device,
graphics object, and Control Engine Service.

Each node provides all of the core functions used to manage an
object in the system. These include:

• Naming. Both a 32-bit handle and a simple yet unique
system-wide identifier that resembles a standard URL
(Uniform Resource Locator) identify all nodes. The 32-bit
handle provides an efficient way to store link references and
provides fast object lookup. Whereas, the URL-like identifier
provides the primary means for lookup in an Internet-enabled
system composed of multiple stations.

• Properties. Properties are named attributes that define object
behavior or appearance. Properties can be written to and
read from. They can be presented on a property sheet to be
customized by the user, exposed for use by other objects,
and accessed programmatically. Typically, properties are
persistent, in that they are stored to disk or flash memory.

• Serialization. Object serialization is the process that
transforms an object into a stream of bytes. It is a process
that is necessary for persistence. In other words, to save
instances of objects to a file or to a binary database, the
system must be able to transform them into a stream of bytes
and back again.

• Persistence. Objects are expected to serialize and de-
serialize themselves for the purpose of being written to disk or
flash memory for non-volatile backup.

• Linking. A key part of distributed control is sharing data.
Niagara objects use links between input and output properties
to bind the objects via the properties they expose, to provide
access to their methods, and to notify one another of events.

• Security. Java-enabled solutions are intended for use in
networked, distributed environments where security can be
an issue. To that end, security groups and privileges are
implemented to provide a level of tamper-free operation.

decades ago and is driving
the standardization of
enterprise component
software.

Companies faced with the
need for increased
productivity need to integrate
the real-time collection and
processing of data about
orders, inventory,
manufacturing, and shipping
to provide a degree of control
over their operations to
maintain a competitive edge.
In an increasingly competitive
world, the power to know
what you need to know at the
touch of a button can make
the difference between
success and failure.

Several organizations have
been created to help foster
the development of
technically excellent,
commercially viable, and
vendor independent
specifications for the
standardization of enterprise
information. The Object
Management Group (OMG)
was founded in May 1989 by
eight companies and in
October 1989 began
independent operations as a
non-profit corporation. OMG
now has over 800 members.
OMG is establishing CORBA
as the "middleware that's
everywhere" through its
worldwide standard
specifications including
CORBA, IIOP, Object
Services, Internet Facilities,
and Domain Interface.



13

The Niagara Station
The Niagara station is a JVM that hosts the running of nodes. It
provides the environment to configure, manage, and run a single
database of nodes and the services required to support a control
application. Since the database is composed of JavaBean-like
objects, the JVM can easily run on multiple computing platforms.

PRISM. PRISM is an acronym for Persistent and Real-time
Information Synchronization Manager. It is the heart of every
station and it provides the following functions while managing its
database of nodes.

• Lookup. This function manages object lookup by handle,
within the station, and by system-wide identifier (SWID), in a
multi-station configuration.

• Persistence. This function manages persistent changes to
node properties by flushing the node to non-volatile storage
(disk or flash memory).

• Lifecycle. This function manages operations related to adding
and deleting nodes, loading and initializing nodes, creating
and deleting links, invoking servlets, and so forth.

• Synchronized Proxies. This function provides a mechanism
for one system to act on behalf of another (on a network)
when responding to database requests. A synchronized
proxy, or mirror image of the station database, is established
locally (on a user interface workstation) to provide
responsiveness at that workstation. The station synchronizes
database changes.

• External Links. On a network, this function manages links
between nodes in different stations.

HTTP Server. Network communications in the Niagara
architecture is by way of HTTP (HyperText Transfer Protocol)
running on top of TCP/IP (Transmission Control Protocol/Internet
Protocol) rather than RMI (Remote Method Invocation). HTTP is
more effective in dealing with establishing communications over
the Internet where security measures (i.e., firewalls) may be in
place to guard against unauthorized access to or from a private
network.

JACE controllers run a dedicated HTTP server that manages all
Niagara network communications. The HTTP server is a high-
performance, full HTTP 1.1 embedded server with a standard
Java servlet API (application program interface). HTTP servlets
are typically more efficient than CGI (Common Gateway Interface)
programs in most applications because of better performance,
flexibility, portability, and security. All data requests and
responses are made in MIME (Multipurpose Internet Mail
Extensions) format, which allows the servlet to consult arbitrary
sources of input data, then return data in a form appropriate to the

What Are the
Enterprise-Level
Standards?

There are numerous
enterprise-level software
standards such as
CORBA, HTTP, XML, and
others that allow
information to be shared
between the BAS and the
enterprise information
system (EIS).

This section provides an
overview of the various
enterprise-level standards
that are affecting the
control systems industry.

Object-Oriented
Standards

Object-oriented design makes
it possible to provide reusable
software ICs that can be
manipulated visually. The
following standards provide
support for software
constructs known as objects.
The following discussions
include CORBA, DCOM,
DDE, IIOP, OLE, and RMI.

CORBA. Common Object
Request Broker Architecture

The Object Management
Group (OMG) introduced
CORBA in 1991 as a set of
rules that establishes the
client-server relationship
between objects. The ORB is
the middleware that enables a
client object to invoke a
method on a server object.
The ORB intercepts the call
and becomes responsible for



14

particular request. Examples include HTML (HyperText Markup
Language) requests and various graphics and data formats
including GIF (Graphics Interchange Format), JPG (Joint
Photographic Experts Group), and MPEG (Moving Picture
Experts Group).

Configuration Database. The station hosts a configuration
database of persistent object information that may be
supplemented by a disk-resident relational database of application
data generated by nodes at runtime.

The configuration database is stored to disk or flash memory by
way of a persistence scheme known as object serialization.
Serialization is the process of encoding objects into a stream of
bytes and the subsequent reconstruction of those objects. It is
used for lightweight storage as well as communication via
sockets. The persistence scheme used by the Niagara station is
a superset of the externalizable interface offered by the standard
JDK (Java Development Kit) interface, which is a customizable
methodology for serializing objects. By refining the serialization
process, Niagara realizes an order of magnitude performance
improvement during all network communications and persistence
operations. Configuration databases can be exported in whole or
in part to either XML format, for easy exchange, or SNS (Serial
Node Set) format, for highly efficient storage and retrieval.

Relational Database. Niagara nodes generate application data
during station execution (runtime). Some of the runtime data
becomes part of the node’s property sheet and is stored to the
configuration database. Other data, however, is better suited to a
relational database model. This type of data is typically non-
configuration data. Trend data and alarm histories fit this model.

On PC-based stations that support access to a physical disk drive
(rather than flash memory), Niagara includes an embedded
Cloudscape relational database management system known as
JBMS. Cloudscape’s JBMS is a fully functional object-relational
data manager written in Java and designed specifically for
embedded server-side applications. It provides standard SQL
(structured query language) access to all application data
generated by Niagara nodes. This provides the end-user with an
environment in which enterprise information and the control
system can share a common view of the data. Through open
database protocols including ODBC (Open DataBase
Connectivity) and JDBC (Java DataBase Connectivity) or via the
station’s HTTP server, both information and automation system
applications can access a relational database that looks like it was
designed specifically for a particular application.

Services. A service is a special type of node that provides
access to published and verified sets of functionality for other
nodes. Niagara includes a wealth of standard services for event
handling, logging, Web access, and more. Examples of services
may include control engine services, which execute control nodes
on a periodic basis; database services, which provide standard
SQL access to all application data; e-mail services, which manage

finding an object that can
implement the request, pass it
the parameters, invoke its
method, and return the
results. The client does not
have to have knowledge of
the server’s location, its
programming language, its
operating system, or any
other aspects that are not
associated with its interface.
The ORB provides the
interoperability that is needed
to support multiple object
systems.

There are several
implementations of CORBA,
the most popular of which is
IBM’s SOM and DSOM
architectures. Two competing
models have been introduced
from Microsoft (COM and
DCOM) and Sun
Microsystems (RMI).

DCOM. Distributed
Component Object Model

DCOM grew out of the
Component Object Model
(COM), originated by
Microsoft, and it extends that
model to support objects
distributed across a network.
DCOM is a Windows-based
model that competes with
CORBA. It allows developers
to create objects and have
other programs and objects
operate on them in a binary-
standard manner. C++
objects, for instance, exist
only for the programs in which
they were compiled, whereas
DCOM objects can be
accessed by any COM-
compliant application. Both
OLE and ActiveX are COM-
compliant.



15

e-mail routing of alarms; and others.

In addition, sets of network protocol layers, known as protocol
stacks, are implemented as services and can be added on the fly.
These stacks provide a common and secure means for
transmitting data between networked devices. They determine
the type of error checking that is used, the data compression
method, and how a device indicates that it is ready to send or
receive data. This architecture provides a very flexible and
powerful vehicle for integrating new building automation
equipment from a variety of suppliers with existing systems.
Among these are services that support BACnet objects,
LonWorks devices from virtually any control manufacturer,
industry standard DDE (Dynamic Data Exchange), GE power
monitoring devices, Johnson Controls Metalink DDE server,
Ingersoll Modbus devices, and others.

Services reside in a table and are loaded with the station
database so objects can find them quickly. During station
initialization, each node registers itself with the services it needs
and then simply pulls data as it is needed during execution.

Niagara Objects. The Niagara Framework includes objects that
model themselves after standard object-oriented programming
structures, which combine both data and procedures to create re-
useable, self-contained entities. Although there continue to be
objects and protocol drivers added to the standard library of
supported devices, the core set of Niagara objects are typically
categorized into five groups: control objects, applications, user
interface objects, containers, and notification services.

Control objects include a variety of constructs that represent
physical devices, controllers, and primitive control applications.
Examples of control objects include Analog IO, Binary IO, Multi-
State IO, Math Operators, Logic Operators, PID Loop, and more.
Niagara’s standard library of objects is based on the BACnet
model.

A more complex set of objects, categorized as applications, is
available for scheduling, logs, and custom sequencing. Program
objects, which are included in this category, provide compact,
easy-to-use, and very powerful software components that allow
the user to customize and otherwise extend standard control
solutions for specific needs.

Program objects are created using a BASIC-like programming
language that is used to declare inputs and outputs, assign
configuration properties, and define object behavior. Users have
access to an extensive library of functions including math and
logic functions, string manipulation, e-mail, and more.

User interface objects provide a set of animators and graphical
components that can be used to build highly visual windows that
represent control sub-systems. User interface objects include a
bar graph, time plot, image spectrum, text box, hyperlink, damper,

DDE. Dynamic Data
Exchange

DDE is primary a Windows-
based mechanism that allows
one application to send
commands to another
application, perform actions in
that application, and have
data returned. In most cases,
one program (the client) is
requesting data and the other
(the server) is providing the
data. For example, with DDE,
you can insert a spreadsheet
into a document created with
a word processor and have
changes made in the
spreadsheet program
automatically update the
document.

Each data item that a server
application can provide has a
unique identifier consisting of
three parts: an application
name, a topic, and a DDE
item name. The application
name is typically the filename
of the executable application
running on the server. The
topic is generally a category
of data in the server
application and the data item
is uniquely identified by some
means.

DDE links are always initiated
by the client application,
which broadcasts a message
containing the unique DDE
identifier to all other
applications currently running.
If a server application
recognizes the DDE identifier
and can provide the
requested data it sends a
response to the operating
system, which establishes a
link between the two
applications. The link remains
made until either application



16

fan, and others.

Containers allow users to organize the station database using a
hierarchical structure much like a file system. Containers can be
used in the same fashion that folders are used to effectively group
control system components. There are basic containers, service
containers, Web page containers, and composite objects.

Composite objects are used to encapsulate a group of nodes into
a single, cohesive new object. The component parts of a
composite object (child nodes) can be other primitive objects or
composites themselves. Select inputs and outputs of the child
nodes can be exposed directly on the composite. This allows the
user to package complex control applications modularly and have
them visually represented as simple graphical objects.

Lastly, notification services include notification classes that are
used to route service messages and alarms to various user
interface devices. In addition, this category includes mail recipient
objects for routing alerts and alarms to various e-mail addresses.

JACE Controller Initialization. The JACE controller utilizes two
types of memory for its basic operation. It uses dynamic RAM as
main memory where all application code and data is copied for
program execution while the station is running. The amount of
main memory is crucial because that determines how many
applications can run concurrently and how much data is readily
accessible at any given time.

In addition to dynamic RAM, the JACE utilizes flash memory. In
general, flash is used as non-volatile storage space for the basic
operating system (boot flash), for storing application code that is
necessary for object initialization and operation, and for storing
object information that must live beyond the life of the object
instance.

The station database is loaded into dynamic RAM from flash
memory during start-up in a process that begins with C/C++
program code initializing its operating environment, which it
establishes as a virtual machine separate from that of the
underlying operating system. Once the operating environment
has been established the station initializes the sub-systems that
support it and loads the station database into PRISM. Each of the
required sub-systems is loaded only once, then used by as many
nodes as need it. With the station database loaded into memory,
the station walks through the registry and loads the services it
needs. A hash table is used to index these services. This is a
highly efficient and common method of accessing data records by
unique numeric index rather than searching through each record
until the desired one is found.

The next step in the initialization process is for the station to
initialize its nodes. The nodes register themselves with the
services they need and the station kicks off an appropriate
number of threads, then opens sockets for messaging. Once the
initialization process is complete, the Web server can start and the

terminates it, the user
selectively terminates it, or
one of the applications is
closed.

DDE client services in the
Niagara Framework can
establish both persistent and
temporary connections
between clients and servers.
Once the client registers its
interest with the server, it can
read data from and write data
to the server. When a
persistent connection is
established, the client
continues to receive
asynchronous updates
whenever values change
within the subsystem being
controlled by the DDE server.
Alternatively, the client can
poll for data from the server
using individual requests.
When doing so, the link that is
established between the client
and the server disappears as
soon as the data is retrieved.

IIOP. Internet Inter-ORB
Protocol

IIOP is an object oriented
protocol that is a critical part
of CORBA, enabling
distributed programs written in
different programming
languages to communicate
over the Internet. Early
versions of CORBA did not
specify an ORB-internal
communications protocol,
which resulted in each ORB
vendor determining how they
would communicate internally.
For that reason, the early
versions of CORBA did not
allow messaging between
objects living in different ORB
server processes.
Consequently, CORBA 2.0
defined IIOP as a standard
protocol that allows



17

user can log-on.

Note: On PC-based stations that support access to a physical
disk drive (rather than flash memory), the initialization process is
equivalent to that of the JACE controller except that persistence
operations utilize the hard drive.

Station Platforms
The Niagara Framework is very scalable, which is an important
feature because it allows end-users to invest in an architecture
that they will not outgrow and one that easily integrates the same
powerful functionality for configurations of every size. On a small
building, a single JACE controller can be used to support a
network of BACnet and LonWorks devices that can be accessed
directly over the Ethernet LAN or remotely over the Internet.

On larger buildings, multiple JACE controllers can be connected
on the Ethernet network to a JACE-NP (Network Processor) that
provides multi-station supervision and multi-user access to the
control system through either local or remote connection.

On multi-building complexes and large-scale control system
integrations, the Niagara Web Supervisor manages global control
functions, supports data passing over multiple networks, and
hosts multiple, simultaneous client workstations connected over
the local network, the Internet, or dial-up access.

It is important to point out that the same technologies, in fact, the
same tools and services that are used to configure and monitor
the smaller system are those that are available to support multi-
user, multi-site configurations.

JACE Controller. The JACE controller is a network computer
platform that supports embedded systems – specifically, the
ChorusOS real-time kernel of JavaOS for Consumers. The JACE
controller can distribute real-time control functions across an
Ethernet LAN and run control applications stand-alone connected
either locally to a JACE-NP or to a remote Niagara Web
Supervisor over the Internet.

The JACE controller can be configured with or without Web UI
services enabled. With Web UI services enabled, the station
supports unlimited users over a secure intranet or remotely
connected over the Internet via a standard Web browser.

Niagara Web Supervisor. The Niagara Web Supervisor is a
turnkey control system and development environment whose
minimum configuration includes a Pentium II Processor (400MHz
or higher), 128Mb RAM, a one Gbyte hard disk, and Windows NT
4.0 (service pack 3 or higher). It is a desktop server platform that
integrates the Niagara station with the relational database and
application development environment (WorkPlace Pro). As a
supervision station, the Web Supervisor includes the object
database, the real-time control engine, and Web UI services,
which provide user authorization for secure Internet access. In

communications between
objects living in different ORB
environments.

OLE. Object Linking and
Embedding

Similar to DDE, OLE allows
you to create objects with one
application and embed them
in another application.
However, OLE provides
greater control over shared
data, therefore, it tends to be
more efficient.

A key advantage of using
OLE is that program control is
temporarily transferred to the
client application for the
purpose of manipulating
shared data. Whereas, with
DDE, control always remains
with the server application.
OLE actually starts the source
application when program
control is transferred to the
object and allows the user to
edit data in its native
environment. DDE does not
provide this functionality
because it can only activate
other applications through
Access Basic.

Support for OLE is built into
Windows and the Macintosh
operating system. A
competing standard
developed jointly by IBM,
Apple, and Lotus is called
OpenDoc.

RMI. Remote Method
Invocation

An ORB (Object Request
Broker) is the middleware that
enables a client object to
invoke a method on a server
object. The ORB intercepts
the call and becomes



18

addition, the Web Supervisor includes licenses that enable
connection of multiple JACE controllers and/or WorkPlace Pro
workstations.

As part of its duties, the Web Supervisor:

• Handles execution of the station database.

• Supports multiple, simultaneous client workstations over
Ethernet, the Internet, or dial-up access.

• Provides database administration for the object database as
well as relational data.

• Manages global control functions including global time
synchronization and central scheduling, energy management,
alarm processing and routing, and trend and data collection.

• Supports global data passing over multiple networks.

As a full-function engineering environment, the Niagara Web
Supervisor includes a comprehensive application configuration
tool set. It provides a graphic environment in which the developer
can create, configure, and fully test control system application
logic and user interface screens using soft-wiring techniques.

The tool set is complete in that it includes integral network
management allowing for bindings to be made between
LonWorks devices, BACnet devices, and existing systems.
Through a simple linking mechanism, the user can share data
between devices of different protocols transparently.

The Web Supervisor supports the latest Web standards including
HTML 4.0, HTTP 1.1, XML, and cascaded style sheets. User
access through the Web is supported on Microsoft Internet
Explorer version 4.X and Netscape Communicator version 4.X.

JACE-NP (Network Processor). The JACE-NP is the middle-
position compromise between the JACE controller and the
Niagara Web Supervisor. It is small enough to provide a cost-
effective solution for medium-sized control applications, but hefty
enough to support multi-station operations. The JACE-NP is a
compact PC platform with an integral hard disk, but no keyboard
or monitor. It provides integrated, multi-station supervision and
relational database management, but it does not include the
WorkPlace Pro engineering environment. The JACE-NP supports
distributed control applications over the Internet with your choice
of standard browser access and/or third party user interface
support.

responsible for finding an
object that can implement the
request, pass it parameters,
invoke its method, and return
results. RMI is the built-in
native ORB that is packaged
with JDK version 1.1.

Although RMI supports
making method invocations
on remote objects, it is not a
CORBA-compliant ORB – it is
native to Java. As such, RMI
is a very natural mechanism
for Java programmers to use
because they do not have to
leave the Java environment.
However, this makes the use
of RMI impractical for use with
objects or application written
in any other language.

WWW and Internet
Related Standards

The terms Internet and World
Wide Web are often used
interchangeably, but they are
not synonymous.

The Internet is a global
network of computer networks
connecting millions of users
worldwide using a simple
standard addressing system
and communications protocol.

The WWW (World Wide Web)
is a subset of the Internet. It
is an information system
composed of hypertext
documents that are
distributed over the Internet.

The following standards
provide support for
exchanging information on the
Internet and the discussions
include CGI, HTML, HTTP,
MIME, and XML.



19

The Evolution of the Niagara Component
Architecture

Much of the impetus for the design of the Niagara Framework has
evolved from a revolution in computing technologies that started in
the 70’s with the popularity of the mainframe computer. At that
time, IBM and Digital Equipment Corporation dominated the
computing market. Mainframe computers provided large
organizations with massive information processing capacity, but
that capacity came with a very hefty price tag. The cost of entry
could reach into the millions of dollars.

The mainframe model consists of an array of dumb terminals
connected to one or more centralized computers over a network.
The terminals are typically low-cost and consist of an ASCII
display terminal, keyboard, and communications port. The
network connection was initially a hardwired one, but more
recently these connections are made via some form of
telecommunications resource.

The advantages of mainframe systems include high performance,
scalability, centralized management, low-cost desktop
accessibility, and a high level of security. On the down side,
mainframes are very expensive, typically proprietary, their
applications are character-based, and as a single-point solution
there is always the potential for bottlenecks and failures.

The minicomputer phase of business computing lowered the cost
of entry to some degree, but it was PC LAN computing that
significantly changed things in the corporate world. The PC
introduced users to the graphical user interface and, along with
thousands of Windows-based software applications, provided new
levels of productivity for employees at every level of the
organization. Low-cost PCs and powerful applications allowed
organizations to extend their computing power out to the desktop,
which reduced the dependence and load on centrally located
mainframes.

Unfortunately, there is a premium to be paid for the power,
flexibility, and increased productivity of distributed computing.
Companies cannot afford to keep every desktop station upgraded
to the latest technology, which is what is required to maximize the
productivity of a distributed computing environment. This is what
lead to the development of client/server solutions.

In a true client/server configuration, application processing is
partitioned across both client and server. For example, in an SQL
environment the client issues a query across the network to the
server. The server hosts the database and processes the query
on behalf of the client. The server then responds back across the
network with the results of the query. This is in contrast to more
traditional PC LAN computing configurations in which data itself,
not just the query and the results, is transmitted over the network.

CGI. Common Gateway
Interface

CGI is a specification that
describes how a Web server
communicates with a CGI
program. A CGI program is
typically a small program that
resides on a Web server and
processes data requests
made of the server. A
common application of CGI
programs is to format user-
entered form data into a
database query. This type of
program is known as a
server-side solution because
the processing occurs on the
Web server (versus the client
workstation). CGI programs
can be written in any
programming language,
including C, Perl, Java, and
Visual Basic.

A problem with CGI is that
each time a CGI script is
executed, a new process is
started on the Web server.
This can overburden the
server and result in slow
processing.

As an alternative to CGI
programs, it is becoming
increasingly popular to
provide dynamic feedback to
Web users by including
scripts that run on the user's
machine rather than on the
Web server. Scripts are
client-side solutions and are
often implemented as Java
applets, Java scripts, or
ActiveX controls.

HTML. HyperText Markup
Language

Although HTML derives from
SGML, it is not a strict subset.
SGML stands for Standard



20

Client/server computing begins to tap into the real potential of
high-end centralized computing where the goal is to reduce the
cost and maintenance of PC LAN configurations, provide powerful
centralized computing capacity, while reducing network bandwidth
requirements. Much like the mainframe model before it,
client/server computing is shifting the responsibility of processing
away from the desktop back to high-powered, highly reliable,
multi-tiered centralized systems.

Client/Server Applications
Traditional client/server applications are two-tiered. The user
interface runs on the client and the database is stored on the
server. The actual application logic can run on either the client or
the server. In what is known as fat or heavyweight client
architecture, the client contains the presentation logic (window or
display), the control logic (algorithms), and the data access logic
(database connectivity). The server is relegated to managing the
database. In thin client architectures, the client contains only the
presentation logic. The control logic and data manipulation logic
are partitioned into separate programs and deployed on one or
more servers.

There are a variety of problems associated with two-tiered
architectures. First, they impose significant administrative
overhead because parts of the application must be installed on
each client. Changes in the application logic can result in
expensive upgrades for all client machines. Second, access is
restricted to a set of proprietary client machines on which the
application software has been installed. Next, scalability is
restricted to the capacity of the server. As the number of clients
increase, server performance suffers if its computing capacity is
not upgraded accordingly.

Multi-Tier Applications
Multi-tier applications are partitioned into multiple distributed
application components that are deployed as separate processes.
Typically, the architecture consists of three tiers. As with
traditional client/server applications, the user interface runs on a
thin client and the database management system resides on a
remote database server. What makes the three-tier model unique
is that the control logic and the data access logic are partitioned
and deployed on one or more servers separate from both the
presentation logic and the database. The middle tier, or
application tier, uses objects to interact with the two tiers above
and below it – it processes requests from clients and manages
database transactions.

The advantages of partitioning application components in this way
include increases in performance, scalability, reliability, and
manageability. In addition, multi-tier applications improve
integration, they support multi-client access, they are highly
flexible, and they provide a level of security that is not available

Generalized Markup
Language, which defines a
non-proprietary set of codes
and conventions used in the
printing industry to format
printed documents. HTML,
on the other hand, defines a
similar set of codes that Web
browsers use to format Web
pages.

HTML codes affect how a
Web page is displayed when
viewed with a Web browser
and they also indicate to the
browser where to find other
resources such as graphic
images.

HTML formatting codes, or
tags, are often called
containers because they
always come in pairs and they
affect the text contained
between them. A browser
that encounters the tag <B>
would display text in bold until
it encountered the tag </B>,
which turns the bold feature
off.

HTTP. HyperText Transfer
Protocol

HTTP is the network protocol
of the World Wide Web. It
defines the set of rules that
applications use to exchange
virtually all forms of data on
the Web including HTML files,
text, graphic images, sound,
video, and other multimedia
content. HTTP not only
defines how messages are
formatted and transmitted, but
it also defines what actions
Web servers and browsers
take in response to various
commands. A browser is an
HTTP client, which sends
requests to an HTTP server,
which then sends responses
to the client. For instance,



21

with heavy client architectures.

Performance. Moving the application logic to a separate server
allows an application to take advantage of the power of multi-
threaded and multi-processing systems. By leveraging the
resources of multiple servers, server components have more
ready access to processes, threads, database connections, and
so on.

Scalability. As system demands increase, highly active
components can be replicated and distributed across multiple
servers to boost performance and support additional users.

Reliability. By replicating and distributing high-use components,
single points of failure are avoided and bottlenecks eliminated.

Manageability. Thin client applications are easier and less costly
to maintain. Very little code is actually deployed on the client
machine. Most of the application logic is deployed and managed
on the server. Fixes, enhancements, and extensions are all
administered through centralized services.

Integration. The underlying theme of componentization is reuse
and seamless integration. A function can be implemented once
and reused in any application that needs it. Developers can pull
from a library of components the functions they need and quickly
assemble dependable applications.

Multi-Client Support. Any number of client applications can
share the same application logic through its published interface.

Flexibility. The majority of application logic is encapsulated in
relatively small, modular components that are accessed through a
well-defined interface. As such, the component parts of an
application can be changed without impacting other components
inside or outside of the container. As a result, multi-tier
applications can easily adapt to changing needs.

Security and Software Protection. Sensitive application logic
often includes proprietary designs that could be reverse-
engineered if deployed on the user’s workstation. In addition, by
leaving the logic on the server, user access can be controlled
dynamically and revoked at any time.

Niagara Framework Components

The adoption of the Internet Protocol (IP) has provided a clear
standard for digital communications. The number of physical
media supported by IP has helped to provide a media-
independent and scalable architecture that can support the range
of requirements for applications spanning residential, commercial,
and industrial markets. In addition, as interest in Web-based
computing grows, there continues to be pressure put on
manufacturers to move towards multi-tier approaches that require
thin client architectures to support browser-based clients and rapid
download of applets. Multi-tier architectures provide this thin client

when you enter a URL in your
Web browser
(http://www.sample.com), this
becomes the command that
directs the Web server to
fetch and transmit the
requested Web page, which
may in turn contain
references (hyperlinks) to
other files whose selection will
elicit additional transfer
requests.

Usually, HTTP takes place
through TCP/IP sockets.
TCP/IP is the suite of
communications protocols
that are used to connect hosts
on the Internet and sockets
are the software objects that
connect applications to those
network protocols. In other
words, when an application
needs to send or receive
TCP/IP messages, it simply
opens a socket and reads
data from or writes data to the
socket – the operating system
takes care of actually
transporting messages across
the network.

One unfortunate characteristic
of HTTP is that it is stateless –
it executes each command
independently, without any
knowledge of commands it
may have executed
previously. This has made it
difficult to implement smart
Web sites that react
intelligently to user input. But,
as all standards do, HTTP
continues to evolve and HTTP
1.1 promises to address new
needs and the shortcomings
of HTTP 1.0.

Features of HTTP 1.1 include:

• Faster response, by
allowing multiple
transactions to take place



22

approach by removing much of the application code from the
client and placing virtually all of the responsibility for life cycle and
state management in the hands of the application tier.

The Niagara Framework is designed on just this type of
architecture – multi-tiered and distributed. The Framework
consists of three tiers: the user interface, the application tier, and
the station database.

User Interface. As an Internet-based system, the Web browser
has an important place in the Niagara Framework. However,
browsers are not typically well suited for power users, nor are they
outfitted to monitor critical alarms. As a result, the Niagara
Framework provides both thin client and heavyweight client
options.

Browser User Interface (BUI). The thin client option, or BUI,
supports viewing the control system from any standard Web
browser including Microsoft Internet Explorer version 4.X and
Netscape Communicator version 4.X.

Niagara WorkPlace Pro. The heavyweight client, known as
Niagara WorkPlace Pro, is a Java Swing-based graphical user
interface designed as a cross between Windows Explorer and a
Web browser. It includes views that allow browser-like viewing of
the control system as well as a complete set of desktop tools to
facilitate unique object-oriented distributed control application
development and system administration. WorkPlace Pro supports
multiple views that allow the user to graphically wire components
when building application logic and user interfaces, it allows the
user to view and test control logic in real-time, and it includes a
programming language that can be used to customize
components.

In addition, WorkPlace Pro features:

• An on-line session that allows the user to connect to a
live running station over an IP network.

• An off-line session that allows the user to work off-line by
accessing a station database directly.

• An application library, which is disk-based, accessible
either locally or over a network, that contains resources
for constructing a station database from pre-defined
nodes, images, and composite control applications.

Application Tier. The application tier makes up the heart of the
Niagara Framework. It includes a set of Java programs that
extend the operating system to provide the object management
services required to support distributed control applications over
the Internet and a common application development environment
and shared object services that fully support WorkPlace Pro. In
addition, the application tier provides embedded network
management that supports both BACnet and LonWorks devices.

The application tier can support multiple stations and multiple

over a single persistent
connection.

• Faster response and
great bandwidth savings,
by adding cache support.

• Faster response for pages
that are generated
dynamically, by
supporting chunked
encoding, which allows a
response to be sent
before its total length is
known.

• Efficient use of IP
addresses, by allowing
multiple domains to be
served from a single IP
address.

MIME. Multipurpose Internet
Mail Extensions

MIME is a specification that
defines the rules used to
format non-ASCII messages
so they can be sent over the
Internet. Most e-mail clients
now support MIME, which
enables them to send and
receive messages via the
Internet with attached files
that contain graphics, audio,
and video.

In addition to e-mail
applications, Web browsers
support various MIME types.
This enables the browser to
display or output files that are
not in HTML format.

XML. eXtensible Markup
Language

XML defines a universal
standard for storing and
transmitting data. It provides
a structural representation of
data that can be used to



23

clients on appropriate PC-based server platforms (NT and Solaris)
or relatively small, embedded solutions. It provides foundation
services and a component control engine, multi-protocol
interoperability, an extensive library of applications and protocol
drivers, Web access services, alarm services, data collection and
reporting, and much more.

Station Database. As previously discussed, the Niagara station
runs within a JVM that provides an embedded, controller-level
environment in which to configure, manage, and run the nodes
and services required by a control system application.

In addition to the default .DB format, configuration databases can
be exported in whole or in part to either XML format or SNS
format. The DBADMIN database conversion program is used to
convert the configuration database. In SNS format, a set of
configured nodes is tightly packed into a binary stream for full or
partial backup, storing application snippets in a library, for efficient
network upload and download, and efficient flash memory
storage. Also, the export and import features of the DBADMIN
utility can be used to convert the configuration database to and
from XML format to provide a standard open format for easy
exchange.

Enabling Technologies

The Niagara Framework is an innovative software solution that
allows mainstream technologies to be applied to software
applications in the form of familiar user interfaces (Web browsers),
rapid application development (Java), and ubiquitous network
access (TCP/IP). Furthermore, the evolution of the Internet has
made possible universal desktop access to vast quantities of
diverse information including real-time data, real-time control,
historical data, graphics, animation, and any combination thereof.
Web browsers have provided both experts and novices with an
inexpensive, common, powerful, and intuitive user interface for
retrieving and navigating on-line information. Corporations are
publishing internal data on secure Intranets and they have
installed Web browsers as a standard desktop component and
interface for accessing that information.

The Java Advantage
Java is a high-level programming language and environment
designed by JavaSoft, a subsidiary of Sun Microsystems, that
evolved out of a large-scale project originally tasked to develop
advanced software for consumer electronics. The project set out
to develop embedded solutions using C++, but a number of
problems drove the development team to improve the language.

Since its beginning in 1995, the Java language continues to
distinguish itself as the new standard for fully portable Internet
applications and, as a multi-threaded solution, Java provides
significant interactive responsiveness in real-time control
environments. A number of Java’s features make it well suited as

encode the content, meaning,
and structure for any type of
data from the simple to the
complex. XML is similar to
SGML and HTML in that it is a
markup language, but its
focus is defining the content
itself, not presentation
technique.

Like both SGML and HTML,
an XML document holds text
annotated by tags. With
SGML and HTML these tags
are predefined and they
specify how documents are
printed and displayed.
However, with XML, there are
no predefined tags. You
define tags to suit your
particular needs.
Furthermore, the tags that
you define tell programs
processing the document how
to understand the data. As a
result, XML documents can
be processed in ways that are
impossible for SGML and
HTML documents.

Lars Marius Garshol, in his
Introduction to XML, presents
an excellent illustration of how
XML could be used. Garshol
speculates that you could
mark up recipes for simple
meals with a DTD (Document
Type Definition) that is tailored
to accept amounts of each
ingredient and alternatives for
some of the ingredients. You
could then easily create a
program that, given a list of
the contents in your
refrigerator, go through the
entire list of recipes and make
a list of the dishes you could
make that day. Alternatively,
the program could sort
suggested dishes by
nutritional information, how
long they would take to
prepare, price, or any number



24

the foundation of the Niagara Framework.

Java is Simple. Java remains an object-oriented language very
similar to C++, but is simplified to eliminate the compiler
technology problems the design team encountered.

A common source of complexity in many C++ applications is
managing memory. Java features automatic garbage collection,
which is the periodic freeing of memory not being referenced.
This makes the programming task easier, quicker, and it
dramatically cuts down on bugs.

Another aspect of being simple is being small. Small Java
software modules called Java applets can be downloaded from a
Web server and executed locally on a client machine running any
standard Web browser such as Netscape Communicator or
Internet Explorer.

Java is Network-Savvy. Java includes a wealth of routines that
have been validated with TCP/IP protocols like HTTP and FTP.
This makes creating network connections easy – Java
applications simply open and access objects over the Internet
using URLs with the same ease that programmers use when
accessing a local file system.

Java is Robust. As a compile-time language, Java provides
extensive error checking at the time the program is compiled so
that bugs are found before the application is distributed.
Moreover, where C++ uses memory pointers, Java uses a
memory address model that eliminates the possibility of
overwriting memory and corrupting data.

Java is Secure. Java incorporates authentication techniques that
are based on public-key encryption, which makes it a highly
secure environment in which to work for distributed systems.

Java is Platform Independent. Java source code is compiled
into a format known as bytecode that is easily interpreted on
virtually any machine. This makes Java applications platform
independent because they run the same in any JVM regardless of
the hardware and software underlying the system. In addition,
since the JVM has no direct contact with the operating system,
there is little possibility of a Java applet damaging other files or
applications.

Java is Multithreaded. Multithreading is a way of building
applications that deal with many concurrent events. The
interactive responsiveness of a multithreaded system is better
suited for real-time environments than is a single-threaded
system.

The Java Security Model
The key advantage of Java is that it was designed for use in
distributed environments. Its authentication techniques make it
unique for deploying secure applications across the Internet. The

of other criteria.

Enterprise-Level
Standards

In the computer industry, the
term enterprise is often used
to describe the entirety of the
computing resources in place
to support a global
organization. An intranet is a
good example of an
enterprise computing system.
The following standards
provide support for sharing
enterprise-level information
and the discussions include
Ethernet, JDBC, ODBC, OSI,
and TCP/IP.

Ethernet.

Ethernet is one of the first
local area network protocols,
developed by the Xerox
Corporation in cooperation
with DEC and Intel in 1976.
Together, they created a 10
Megabit per second system,
which later became the IEEE
802.3 communications
standard. Since that time,
802.3 has been expanded to
include a number of newer
cabling options with the
common goal of being simple,
low-cost, compatible, high-
speed, flexible, and
maintainable. Ethernet is
currently one of the most
widely installed and accepted
LAN choices worldwide.

IEEE 802.3 defines a
communications standard that
is a multi-access, packet
switching network where each
node has equal access to the
network. Data is transmitted
on the network and each
node determines whether the



25

Java security model includes intrinsic security that protects the
end-user from both intentional and unintentional errors. Unlike
ActiveX controls, which have full access to the operating system
and its resources, Java’s Security Manager provides resource-
level security that restricts a program’s access to the disk, to the
network, and so on. Although ActiveX controls tend to exercise
more direct control than Java applets, this characteristic makes
them more platform-dependent and they can compromise the
integrity of the application that they support and its data.

Java programs are interpreted by the JVM and do not execute
native machine instructions. Since they do not access system
resources directly, do not modify or install new operating system
or shared files, and do not require permanent installation on disk,
they are far less likely to crash a system, breach security, or
otherwise adversely affect system configuration and performance.

Finally, the Java security model introduces digital signatures that
are assigned to applets to provide a means for extending the
accessibility of software components from a trusted source. The
digital signature verifies that the applet comes unchanged from its
host, so the end-user can download and use it safe in the
knowledge that the source code has not been tampered with
either by intentional means or through some arbitrary
programmatic failure.

Extending the Framework

The ultimate goal of the Niagara Framework is to build a technical
foundation for next-generation, multi-vendor interoperable control
systems that satisfy the need for Internet openness, while
maintaining the determinism and integrity required for distributed
control. Secondly, to help alliance partners maintain the
uniqueness of their vertical market products while sharing a
common object model infrastructure of distributed control
functions.

The Niagara Framework enables rapid application development
by providing a core set of reusable software constructs that are
immediately useful for information and automation system
applications. They provide building blocks that can be assembled
into working control system components that comprise a complete
information automation solution.

In addition to Niagara’s capacity for rapid application
development, the Framework provides the means to integrate an
array of legacy, multi-vendor equipment under the umbrella of a
single, integrated system. Niagara allows Facilities Managers to
adopt new technologies and to integrate the latest in control
system equipment and have these applications coexist
seamlessly with existing equipment – without the use of inefficient
and inflexible gateways.

Lastly, Niagara allows creation of custom control objects that

data is appropriate for it or
not. The standard provides a
CSMA/CD (Carrier Sense
Multiple Access/Collision
Detect) Media Access Control
protocol, which means that
any node on the network can
transmit at any time, provided
the network is quiet. After
determining that the network
is quiet, the node transmits its
message. Should two nodes
transmit simultaneously and a
collision occurs, the network
manager directs the nodes to
wait a random amount of
time, then retransmit.

Ethernet uses either
baseband (one signal at a
time) or broadband (multiple
signals simultaneously)
transmission. A variety of
media can be used including
10BASE-T (twisted pair),
10BASE5 (also known as
Thick Net, or the original spec
using heavy coaxial cable,
RG-11), 10BASE2 (also
known as Thin Net, or a
newer, lighter coaxial cable,
RG-58), or fiber optic cable.

IEEE 802.3 also provides:

• Installation will support a
bus or star topology.

• Data transfer rates of 10
Mbps or higher.

A newer version of
Ethernet, known as
100Base-T or Fast
Ethernet, supports data
transfer rates of 100
Mbps. The newest
version, Gigabit Ethernet,
supports data rates of 1
gigabit (1,000 megabits)
per second.



26

easily integrate with the core set of constructs to extend the
flexibility of the Framework. Program Objects provide compact
software components that allow the user to customize and
otherwise extend standard control solutions for their specific
needs. Program Objects can have their variables bound to other
objects without affecting the integrity of the application.

Sample Configurations

Figures 1-3 in the next section illustrate sample configurations that
are representative of small, medium, and large-scale applications
of the Niagara Framework. In its minimum configuration, the
architecture supports a control system for a single, small building
running a network of BACnet and LonWorks devices connected to
a single JACE controller on the same field bus. Embedded Web
UI services allow the JACE controller to support countless users
over the intranet/Internet.

Figure 1 illustrates the use of the JACE-NP to support multiple
stations on a single Ethernet backbone. As needed, the JACE-
NP can be configured to interface the automation system to the
information domain over the enterprise LAN. Local and remote
browser user interface is supported by Web UI services
embedded in the JACE-NP, which also provides station
supervision for multiple JACE controllers and their network of
LonWorks application devices.

Figure 2 illustrates a large-scale configuration where the Niagara
Web Supervisor provides multi-client, multi-station support and
integration of:

• Next-generation, multi-vendor, interoperable LonWorks
control components over a LonWorks field bus.

• Utility metering over an optional RF link.

• Existing control system products connected over an RS-232
or RS-485/422 communications bus, directly connected to the
Ethernet LAN, or by way of a DDE link through the Niagara
Web Supervisor.

• Industrial process control networks.

Again, embedded Web UI services provide support for multi-user,
multi-platform access to the control system from any
intranet/Internet connection. In addition, the Niagara Web
Supervisor includes licenses that enable connection of multiple
JACE controllers and/or WorkPlace Pro workstations.

Figure 3 illustrates how the Niagara Framework can be used to
support multiple buildings from a centrally located corporate
server over the Internet. Local browser user interface is
supported directly over the Ethernet LAN at locations where Web
UI services are enabled on the JACE controller. In addition, these

• Ethernet is a bus
contention system, not a
token passing system.

• Supports a maximum of
1024 addressable nodes.

• Data is transmitted in
packets including frames
that define both source
and destination
addresses.

• Frame sizes can range
from 64 bytes (minimum)
to 1518 bytes (maximum).

• Ethernet defines the
physical layer of the
seven-layer OSI model,
ensuring uniform physical
and electrical
characteristics.

JDBC. Java Database
Connectivity

JDBC was developed by
JavaSoft (Sun Microsystems)
as a data access standard
and it is the primary API for
data access in the Java
programming language.
JDBC implements a standard
SQL interface in Java
classes, which enables Java
applets to execute SQL
statements. This allows Java
applets to interact with any
SQL-compliant database.
Since virtually all relational
database management
systems (RDBMS) support
SQL, and because Java itself
runs on most platforms, JDBC
makes it possible to write a
single database application
that can run on different
platforms and interact with
different RDBMSs.

JDBC is similar to ODBC, but



27

services enable high-speed, remote browser user interface over
the Internet through a network of cable/ADSL modems. Lastly,
remote system monitoring and support is provided over the
Internet through the Niagara Web Supervisor.

it is designed specifically for
Java applets, whereas ODBC
is language-independent.

ODBC. Open DataBase
Connectivity

ODBC was developed by
Microsoft as a language-
independent standard
database access method to
provide users with a
mechanism to access any
data from any application,
regardless of which database
management system (DBMS)
is handling the data. ODBC
employs a database driver
inserted between the
application and the DBMS to
translate application database
queries into commands that
the DBMS understands. For
ODBC to work, both the
application and the DBMS
must be ODBC-compliant.

OSI. Open Systems
Interconnection.

See Protocol Stack in the
Glossary.

TCP/IP. Transmission
Control Protocol / Internet
Protocol

TCP/IP is a set of protocols
developed to allow computers
to exchange information
across a network. Most
notably, TCP/IP has become
the “Internet protocol suite” or
the communications language
of the Internet. Moreover,
TCP/IP is now being used in
private networks, intranets,
and extranets for applications
including e-mail, file transfer
(FTP), and remote login
(TELNET).



28

Customer Benefits

Tridium recognizes the value of open technologies that allow
interoperability of multi-vendor equipment and compatibility of
control and information management applications. The benefits of
true openness are extensive, but the single most valuable result of
adopting the Niagara Framework is that it puts System
Integrators, Energy Services Providers, and end-users in control
of their facilities, letting them choose the products they want, with
the features they need, from the vendors who perform to their
expectations.

The Niagara Framework is secure, scalable, cost effective, robust,
and extensible. In addition,

• Niagara provides interoperability through a distributed object
infrastructure and native support for standards. It is NOT just
a gateway solution.

• The architecture promotes platform independent applications
that are plug-and-play including BACnet, LonWorks, and
legacy integration.

• The framework solution simplifies the automation and
information architecture across the entire enterprise and can
significantly reduce hardware, software, engineering, training,
and support costs.

• Integrating automation data into business information
systems is no longer a manual process.

• Niagara eliminates the need to replace versus integrate.

• End-users can efficiently reconfigure their control systems to
fit changing circumstances, without entering into a lengthy
customization process.

• The Niagara Framework allows alliance partners to maintain
the uniqueness of their vertical market products, while sharing
a common object model infrastructure of distributed control
functions.

• As a complete solution, Niagara provides a seamless,
networked environment that can quickly bring to market the
precise products and services the customer demands.

The Niagara architecture makes it possible for anyone with
appropriate security, from anywhere, at any time to interact with
smart devices embedded in building, power/utility, and industrial
control networks through a standard Internet browser.

TCP/IP combines the Internet
Protocol (IP) at the lower end,
which allows you to deposit
and retrieve datagrams, and
the Transmission Control
Protocol (TCP) at the higher
end, which allows you to
establish a virtual connection
between the source of the
data transmission and its
destination.

TCP manages the
disassembly of messages
from network applications into
smaller packets that are
handed to the IP layer for
transmission over the Internet.
It also manages the re-
assembly of packets into the
original message for
processing by network
applications. IP interfaces
with the TCP module above it
and most typically an Ethernet
driver below it to address and
route messages so they get to
their destination.



29

Niagara
JACE-NP

with embedded
Web UI Services

Power, Gas,
and Water

Meter RF Link

LonWorks
Application

Devices

Optional RF Link

Ethernet, TCP/IP, CORBA, BACnet, XML, HTTP

Local
Browser User

Interface

LonWorks
Application

Devices

LonWorks
Application

Devices

L
o

n
W

o
rk

s
F

ie
ld

B
u

s

JACE Controller

Internet

Remote
Browser User

Interface

Remote
Browser User

Interface

L
o

n
W

o
rk

s
F

ie
ld

B
u

s

JACE Controller

Lighting
Control

HVAC
Controls

Multi-Function
Sensor

LonWorks
Application

Devices

Asset
Management

CCTV

Power
Management

Access
Controller

Figure 1.

JACE-NP Configuration
Local and remote BUI access to the control system network via Intranet/Internet, Ethernet, TCP/IP, CORBA,

BACnet, LonWorks, and Optional RF Link. The JACE-NP provides multi-station support for mid-sized
integrated BAS network.



30

Remote
Browser User

Interface

Internet

WorkPlace Pro

LonWorks
Application

Devices

JACE Controller

* RS-232 or RS-485/422
Communications Bus

BAS Control
Module

BAS Control
Module

BAS Control
Module

P
ro

p
ri

et
ar

y
C

o
m

m
u

n
ic

at
io

n
s

B
u

s

3rd Party
Area Controller

Power, Gas,
and Water

Meter RF Link

Optional RF Link

L
o

n
W

o
rk

s
F

ie
ld

B
u

s Access
Controller

HVAC
Controls

Multi-Function
Sensor

Lighting
Control

LonWorks
Application

Devices

Asset
Management

Power
Management

CCTV

Ethernet, TCP/IP, CORBA, BACnet, XML, HTTP

JACE Controller JACE Controller

Niagara Web
Supervisor

* The JACE-I controller also supports 3rd
party integrations that may be directly

connected to the Ethernet LAN or by way
of a DDE link through the Niagara Web

Supervisor.

Industrial Process
Controller

Power
Monitoring
& Control

Motor
Drives

Other Industrial
Devices

Industrial
I/O Devices

Local
Browser User

Interface

Figure 2.

Large-Scale, Web Supervisor Configuration
Local and remote BUI access to large-scale integrated BAS and process control networks via Intranet/Internet,

Ethernet, TCP/IP, CORBA, BACnet, LonWorks, and proprietary communications protocols. Niagara Web
Supervisor provides multi-station and multi-client support and hosts the WorkPlace Pro application

development environment.



31

Ethernet

Local
Browser User

Interface

Building One

Standalone Building

Ethernet

Building Two

Remote
Browser User

Interface

Ethernet

Niagara Web
Supervisor

Regional Support Center
or Corporate Server

Internet

JACE Controller
with Embedded UI Services,

Supporting LonWorks Network
and Local BUI

JACE Controller
with Embedded UI Services,

Supporting LonWorks Network
and Remote BUI

Internet

Internet

Cable/ADSL
Modem

Cable/ADSL
Modem

Cable/ADSL
Modem

Figure 3.

Remote Small Building Monitoring & Control
Local and remote small building monitoring and control over Internet cable/ADSL modem network. Niagara
Web Supervisor provides multi-station and multi-client support for local/regional support center or corporate

server.



32

Glossary of TermsGlossary of TermsGlossary of TermsGlossary of Terms

ActiveX control ActiveX controls can be automatically downloaded and executed by a Web
browser and they provide functionality that is very similar to Java applets – they
enable Web authors to embed interactive elements in their Web pages.
ActiveX controls, however, have full access to the operating system (Windows).
This tends to make them more powerful than Java applets, but this power
erodes their portability and security. By being tied to Windows, ActiveX
controls are not platform independent user interface controls and they can
compromise the integrity of the application that they support and its data.

Programmers can develop ActiveX controls in a variety of languages, including
C, C++, Visual Basic, and Java.

applet A smaller application program designed to be executed from within another
larger program. Comprehensive application programs are executed directly
from the operating system. Applets, on the other hand, are smaller modules
that can be called from a variety of applications. For instance, applets can be
downloaded from a Web server, by a Web browser, and executed on a client
machine. With the growing popularity of object-oriented programming and OLE
(object linking and embedding), applets are becoming very popular.

application library A collection of pre-built and pre-tested software components that perform
specific functions. They are sometimes called modules or routines. The
routines are stored in libraries, then accessed by the application programs that
need them. This is particularly useful in that frequently used routines can be
stored in a common pool, called by any number of applications, and updated as
needed without directly impacting the parent application program. In Windows
environments, library files have a .DLL extension.

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers,
Inc.

authentication This is the process of identifying a user, typically by having them enter a
username and a password as part of a log-in procedure during system start-up.
Authentication merely identifies the user, but says nothing about the access
rights of that person.

Authorization is different from authentication, in that authorization is the process
of granting a user access to certain functions and objects based on their
identity.

In addition to using authentication as it relates to password access, the term
also has meaning in the LonWorks domain. As it relates to Echelon devices,
authentication means one of two things. First, if authentication is enabled on
an Echelon device, only network management tools using authentication
messages can change that device’s configuration. Next, network variables can
be configured to accept only authenticated updates.

BACnet Building Automation and Control Networks

See Sidebar.



33

cascaded style sheets
(CSS)

In word processing and desktop publishing, style sheets define templates for
page layout. They can be used to define page size and orientation, font size
and style, paragraph spacing, tabs, borders, and more. Style sheets are very
useful in defining common templates that can be used over and over for similar
type of documents. For example, you can define style sheets for personal
letters, professional reports, newsletters, and so on. As with desktop
publishing, style sheets can be used in Web page design.

In considering the application of style sheets, one must consider that both
publisher and reader may wish to influence style. Publishers may wish to have
a distinctive look that they implement for all of their documents, where users
may either wish or need to restrict the use of some elements based on system
capacity or personal preference.

In an effort to accommodate both publisher and users, conflicts may arise.
Whose style preference wins out when there is a conflict between the styles
publishers provide and the styles users wish to use? CSS was developed by
the W3C (World Wide Web Consortium) to resolve these conflicts. CSS
includes a scheme for assigning priority to each style element: styles may be
identified as “normal” or “important”. If two styles have the same priority, the
publisher’s style sheet takes priority. Otherwise, the style with the highest
priority wins. Note, however, that users can disable style sheets altogether
(through browser settings), which give them ultimate authority over the user of
style sheets.

CGI Common Gateway Interface

See Sidebar.

client One side of the client-server relationship. Client-server is a network
architecture where one or more high-end computers (servers) process
dedicated tasks and manage shared resources for a collection of PCs or
workstations (clients) on which users run applications. The clients rely on the
servers for various resources including drive space, files, printers, and even
processing power.

CORBA Common Object Request Broker Architecture

See Sidebar.

DCOM Distributed Component Object Model

See Sidebar.

DDE Dynamic Data Exchange

See Sidebar.

distributed control
system

A system of dividing automation control into several areas of responsibility,
each managed by its own controller or processor, with the whole
interconnected to form a single entity usually by communications buses of
various kinds.

enterprise information
system (EIS)

The IS department for many companies is the department that is responsible
for computers, networks, and information management. EIS refers to
information systems management across an entire organization, which may be
composed of several companies and locations (globally). An intranet is a good
example of an enterprise computing system.



34

Ethernet See Sidebar.

extranet An intranet that is partially accessible to outside users. Typically, intranets
reside behind firewalls and restrict access to inside users – those with
connectivity on the secure side of the firewall. Extranets, though, provide
various levels of access to authorized outside users.

Extranets are becoming a popular means for business partners to exchange
information over the Internet.

field bus Years ago, when process and automation control system architectures were
highly hierarchical, there was a clear separation between the categories of
communications layers. In the process world, the sensor bus supported
discrete sensors and actuators, the device bus supported analog sensors and
actuators, and the field bus delivered measurements via a 4-20mA loop. Above
these was a supervisory bus that supported a data network of operator
consoles.

In the BAS world, sensors connect directly to controllers, smart actuators and
application-specific controllers connect on a controller trunk, and area
controllers provide global control of the network. Above these, the user has the
option of connecting workstations to gather control system data.

As control system architectures have flattened, there has been much confusion
created associated with the use of the terms: sensor bus, device bus, field bus,
and now information network. The growth of digital communications technology
and the push for open communications protocols have led to a vast array of
networking options that are eliminating the distinction between device-level
communications, field bus networks, area controllers, and even that of the
information network.

Field bus refers to an all-digital, serial, two-way communications architecture
that includes sensors and actuators, smart actuators and controllers, stand-
alone processors, and user interface appliances interconnected on a single,
fully interoperable network. As such, the field bus serves as the Local Area
Network for all devices beneath a JACE controller.

firewall Firewalls are frequently used to prevent Web surfers from accessing networked
resources connected to the Internet, especially intranets. Firewalls can prevent
outside users from accessing a private network and they can block certain
messaging from being placed on the Internet by inside users. They can be
implemented in either hardware or software, but they are most often
implemented as a combination of the two. All messages entering and leaving
the intranet pass through the firewall, which examines each message and
blocks those that do not meet certain criteria.

flash memory Traditional non-volatile memory came in the form of erasable/programmable
read-only memory (EPROM). The greatest disadvantage of EPROM
technology was the cost and inconvenience associated with re-programming
the device, which required an external UV light source. EPROM gave way to
EEPROM, which is electrically erasable and imposed less of an interruption in
system operation for the purpose of changing the code programmed therein.

More recently, flash memory devices have further reduced the overhead
imposed by making code changes after the system is in the hands of the user.
Like EEPROM, flash memory can be re-programmed while in the system, but it
is significantly faster because data can be written and erased in blocks rather



35

than one byte at a time. Flash memory is solid-state, it has no moving parts,
and it does not require a battery to retain data for over one hundred years.
System power is needed only during a read or write cycle.

To this point, the focus of using flash technology has been on code storage with
memory capacity requirements of less than 1 Mbyte. Historically, system
designers used flash memory in the design of built-in software (BIOS) so it
could be updated quickly and easily. But, continuing advances in memory
technology are driving the use of flash devices beyond traditional non-volatile
storage designs. Today, the flash memory market is diverging into products
that support both code storage and data storage applications, where the
memory capacities reach 32 Mbytes and beyond. With the data storage
requirements of flash approaching those of dynamic RAM, performance
improvements (speed and block protocols) are critical.

Unlike traditional non-volatile memory devices, which emulate ROM storage,
the flash technology adopted by the Tridium design provides high-capacity,
high-speed, embedded or removable mass storage that emulates disk-based
storage. One Mbyte of boot flash and at least 32 Mbytes of serial flash are
used on the JACE controller to provide highly efficient persistent storage of the
station database. The database is loaded into dynamic RAM from flash during
station start-up and copied back to flash on a regular basis to provide non-
volatile backup. As an alternative to on-board flash, the JACE controller
provides optional PCMCIA connectivity for removable mass storage.

hierarchical structure A hierarchical structure describes a system whose organization resembles that
of a tree. In other words, components of the structure are linked to multiple
subordinate components beneath them. A hierarchical structure may reflect the
organization of a file system, where directories contain sub-directories and sub-
directories contain files. The menu structure of a program may be hierarchical
in that the root menu provides access to multiple sub-menus below it.

Hierarchical structures have been very popular in the design of control systems.
Much of the installed base consists of architectures with host processors
supporting a network of area controllers each supporting a network of smart
actuators and application-specific controllers to which are connected sensors
and controlled devices.

There are a variety of problems with a hierarchical design in control system
architecture. Because of the star-type topology, installation can be costly,
throughput congested, and troubleshooting complex. Because central
controllers manage communications between their nodes (and other
controllers), a failure at the controller level can affect monitoring and control of
a complete section of the system. As control devolves to the field bus level,
system architectures are becoming more flat and there is a definite move away
from hierarchical control system design.

In addition to these uses, the term hierarchical is used to describe the structure
for storing nodes in the station database. The root of the database is a station
node in which containers store various groupings of control system objects.
These objects can be containers themselves, composite objects, individual
control applications, groups of services, or whatever structure best suits the
user.



36

HTML HyperText Markup Language

See Sidebar.

HTTP HyperText Transfer Protocol

See Sidebar.

hyperlink An element contained on a Web page that links the user to a different Web
page on the same site or an entirely different site. Hyperlinks are also used as
user controls in electronic documents that take the user to another place on the
current page or to a completely different document.

Typically, you click on a hyperlink to navigate a Web site, to link to related
topics, or to display glossary pop-ups for hi-lited terms in electronic documents.

IIOP Internet Inter-ORB Protocol

See Sidebar.

Internet The Internet is a global network of computer networks connecting millions of
users worldwide using a simple standard addressing system and
communications protocol.

interoperability The ability of multiple vendors’ products to be integrated into one flexible
system without using custom integration products. There are varying degrees
of interoperability.

JavaBean Sun Microsystems defines a JavaBean as “a reusable software component that
can be manipulated visually in a builder tool.”

Software component models provide conventions for writing user-interface
controls that are platform-independent. In other words, component models
strive to define a set of rules that provide for rapid development of reusable
software modules so that application development tools and runtime
environments running on various computer platforms can manipulate them
without the need to recompile. Prior to the release of the JavaBean API
Specification, there were two popular component architectures: Microsoft’s
ActiveX and a competing standard developed by IBM, Apple, and Lotus known
as OpenDoc.

The 1.0 level of the JavaBeans specification came out in October 1996 and it
became the foundation on which the Java Development Kit (JDK) was based in
1997. Unlike ActiveX controls, which are largely tied to the Windows operating
system and distributed as machine-specific binaries, JavaBeans can run
anywhere. The obvious trade-off is that JavaBeans may not be able to take full
advantage of their local environment without compromising this portability.
Nevertheless, the JavaBean component architecture becomes the obvious
choice for developing components that can be downloaded from the Internet.

Java controller Traditional proprietary automation controller platforms have had too little
memory, speed, and throughput to support multiple building service
applications. Therefore, each application such as HVAC and access control
has been provided on separate controllers. This leads to a less comprehensive
solution where installation costs are high and integration is difficult if not
impossible.

These limitations can be overcome by employing Java controller processor
technology, which lets you integrate multiple building service applications on a



37

common computing platform.

A Java controller is a network computer platform that supports embedded
systems – specifically, the ChorusOS real-time kernel of JavaOS for
Consumers. The Java controller, connected to an interoperable BACnet and
LonWorks field bus, can distribute real-time control functions across the
Ethernet bus, run control applications stand-alone, and provide users with
Internet connectivity.

Not only is the Java controller extremely flexible in terms of providing
comprehensive integration solutions, it is low-cost. The platform itself is
competitive with other automation controllers, the installed cost is significantly
reduced, and it can be administered and updated from a central network server.

Java Virtual Machine
(JVM)

The Java virtual machine is a self-contained operating environment that
behaves as if it were a separate computer. It acts as the bytecode interpreter
and runtime environment for Java applets, which are not given any direct
access to the host operating system. This design has two distinct advantages:
system independence and security.

Java applications are platform independent because they run the same in any
JVM regardless of the hardware and software underlying the system. In
addition, because the JVM has no direct contact with the operating system,
there is little possibility of a Java applet damaging other files or applications.

JDBC Java Database Connectivity

See Sidebar.

kernel The central module of an operating system. It is the part of the operating
system that loads first and remains in main memory. Because it stays in
memory, it is important for the kernel to be as small as possible, while still
providing all the essential services required by other parts of the operating
system and applications. Typically, the kernel is responsible for memory
management, process and task management, and disk management.

LON Local Operating Network

See Sidebar.

metadata Metadata is data about data. It describes attributes of the data itself – it can
describe how data is collected and stored, when it was collected and by whom,
and it can describe how data is formatted.

The Niagara object model includes property descriptors that provide a much
richer metadata model as compared to standard JavaBeans. For instance,
Niagara property descriptors include information about security privileges,
engineering units, and enumeration tags. In addition, property descriptors can
cross-reference other properties (property X’s engineering units are stored in
property Y). With data typing refined to the primitive level, data access is very
quick and performance is significantly enhanced for the distributed real-time
environment.

MIME Multipurpose Internet Mail Extensions

See Sidebar.

network management In the context of intelligent control networks, network management refers to the
tools and services that support the process of logically addressing nodes,



38

configuring them, and binding their network variables.

object-oriented
programming (OOP)

Object-oriented programming is a technique that employs the use of software
constructs that not only contain code (sequences of computer instructions), but
also data (the information on which the code operates). These constructs are
called objects and they tend to insulate the programmer from the functional
details of the object by virtue of the way they operate. Everything an object can
do is represented by its message interface. In other words, objects simply
receive and send messages. The message that an object sends is determined
by the message it receives and the methods it contains. Methods are the
actions that objects carry out.

Objects are defined by their class. Objects are individual instances of a class
and all that is needed to create a new class of object is to create a subclass of
the original that most closely matches the behavior that is needed. The
subclass inherits the entire behavior of the original and it allows customization.
It is the reusability of objects (or their inheritance) that makes object-oriented
programming so efficient. Programmers simply create new objects that inherit
many of the features of an existing construct and they can be assured that it will
function properly. This approach speeds the development of new programs,
provides reusability, and improves maintenance.

There are a number of object-oriented programming languages in use today
including C++, Smalltalk, and Java. C++ is the object-oriented version of C that
uses a “compile-time binding” technique, which makes for high runtime
efficiency and relative small code size, but it can lead to some inefficiencies in
terms of reuse. Smalltalk, on the other hand, uses a “runtime binding”
technique, which means that nothing about the object needs to be known until
the program is run. As a result, Smalltalk programs are considered to be faster
to develop than C++.

Java is the latest of the object-oriented programming languages and it is closely
tied to the Internet and Web browser development. It also provides some
important improvements over both C++ and Smalltalk. C++ uses memory
address pointers, whereas Java uses a memory address model that eliminates
the possibility of overwriting memory and corrupting data. Java uses automatic
garbage collection, which is a feature that frees the programmer from having to
explicitly allocate and de-allocate memory. Also, Java runs on a virtual
machine, which is software built into the Web browser that executes the same
Java bytecode no matter what type of computer platform is being used.

ODBC Open DataBase Connectivity

See Sidebar.

OLE Object Linking and Embedding

See Sidebar.

OSI Open Systems Interconnection

See Protocol Stack

primitive Primitive is a term that refers to subordination. In programming, primitives are
the basic operations supported by the language from which procedures are
built. Primitives can be low-level objects from which higher-level, more
complex objects are constructed (composites).

Primitives can also refer to the properties that define an object, but more



39

importantly their component data types. In this case, primitives are integers,
floating-point values, Boolean values, or other data that constitute the data
store known as a property.

Also see Metadata.

protocol stack Protocols define a common method for communications between computers.
In general, a network protocol defines how communications should begin, how
communications should end, and the sequence of events that occur in
between. Protocols are established by standards committees then
implemented by hardware and software manufacturers in their products.

At the transmitting computer, protocols break down data that is to be
transmitted into smaller segments called packets. These smaller segments can
be transmitted much quicker, resulting in significant response time
improvements when large amounts of data are to be transmitted. Protocols are
also responsible for adding addressing information and preparing the data for
transmission through the network interface card (NIC) and the transmission
media (wire, fiber, etc.).

At the destination computer, protocols are responsible for collecting packets,
striping off formatting information, copying the data portions of the message to
a memory buffer, then reassembling the message in the proper order and
checking it for errors.

The work of several protocols must be coordinated to prepare, transfer, receive,
and act upon data transmissions. This is referred to as layering. The OSI
(Open Systems Interconnection) Reference Model is one such combination of
protocols where each layer is responsible for handling a function or subsystem
of the communications process. The OSI model defines seven layers:

Application Layer Initiates or accepts a request.

Presentation Layer Translates data into a format that is understood
by the receiving computer, can compress or
expand data, and can encrypt or decrypt data.

Session Layer Establishes and manages transmissions
between computers, synchronizes message
transmissions, and communicates errors from
upper layers.

Transport Layer Organizes higher level messages, delivers
segments to higher levels, and detects and
attempts to correct problems in the network.

Network Layer Determines best routing and adds sequencing
and addressing information to the packet.

Data Link Layer Establishes and maintains connections
between computers, performs media access
control, and deals with errors from upper
layers.

Physical Layer Carries messages between computers.
Ethernet is one of the most widely installed and
accepted implementations of the physical layer
of the OSI model.

The various layers of protocols and the software that is used to process those
protocols are often referred to as a stack. Programmers often talk about



40

loading a stack, which means to load the software required to use a set of
protocols. Another common phrase is binding a stack, which refers to linking a
set of network protocols to an NIC. Every NIC must have at least one stack
linked to it, but if more than one stack is bound to a particular adapter, the
binding order determines which protocols are used to attempt a successful
connection.

real-time control system A real-time control system responds in a timely and predictable way to
unpredictable external events. The key characteristics of a real-time control
system are:

• Timeliness. It must respond very quickly to applications, which are required
to complete certain tasks within the time boundaries it has to respect.

• Simultaneity or simultaneous processing. Even if more than one event
happens simultaneously, all deadlines must be met.

• Predictability. Also known as determinism, one characteristic of real-time
control is that reactions to external stimuli are very predictable – all possible
events are reacted to in precisely the same fashion every time.

• Dependability. It is necessary that the real-time system environment be
ultimately reliable.

relational database A relational database is a database that contains multiple tables that are related
through common fields. This differs from a flat-file design where each database
is self-contained in a single table. Relational databases are powerful because
they require few assumptions about how the data is related, the number of
tables and their size, and how data may be extracted from the database. The
key advantage of a relational design is that data can be viewed in many
different ways from a single database with virtually no duplication of data in the
various tables that comprise the database.

The database management system associated with a relational database is
referred to as a RDBMS and almost all full-scale database systems are of this
type.

RMI Remote Method Invocation

See Sidebar.

RTOS Real-Time Operating System

It is important to distinguish between a real-time system and a real-time
operating system. The real-time system represents the set of all system
elements including the hardware, the operating system, and the applications
that are needed to meet the system requirements. The RTOS is just one
element of the complete real-time system and it must provide sufficient
functionality to enable the entirety of the system to meet its requirements.

It is also important to distinguish between what are simply fast operating
systems and true RTOSs. Speed, although useful for meeting the overall
requirements of an RTOS, does not by itself meet the requirements of one.

A popular Internet newsgroup associated with RTOS design lists some of the
requirements of RTOS to be:

• It must be multi-threaded and preemptive.

• It must support thread priority. A system of priority inheritance must exist



41

and it must support predictable thread synchronization mechanisms.

• The behavior of the operating system must be predictable. This means
real-time system developers must have detailed information about the
system interrupt levels, system calls, and timing.

The ChorusOS kernel provides the foundation for JavaOS for Consumers, the
RTOS of the Java controller. ChorusOS provides the real-time functionality
and determinism required for distributed control systems. Its modular
architecture, with replaceable systems components allows ChorusOS to scale
seamlessly from very small, embedded systems to high-functionality,
transparently distributed platforms.

serialization Object serialization is the process of transforming objects and their references
into streams of bytes. This mechanism is not only effective for storing and
retrieving objects to and from disk or flash memory, but also for communicating
via sockets. By default, serialization writes and reads non-static and non-
transient data fields, which makes it both fast and lightweight. In addition, it
provides a certain level of security in that secure data need only be declared
transient and therefore not serialized.

servlet Where applets are small application programs that are executed from within
another larger program, servlets are applets that run on a server. This term
usually refers to a Java applet that runs within a Web server environment.

Java servlets are becoming an increasingly popular alternative to CGI
programs, which typically process data requests of Web servers. The key
advantage of Java servlets over CGI programs is that they are persistent. This
means that once a Java servlet is started, it stays in memory and can fulfill
multiple requests. The key advantage to persistence is that it makes Java
servlets much faster because there is no time wasted in setting up and tearing
down the process.

TCP/IP Transmission Control Protocol/Internet Protocol

See Sidebar.

URL Uniform Resource Locator

URLs provide a global addressing scheme for documents and other resources
on the World Wide Web.

The first part of the address indicates what protocol is used. The second part
specifies the IP address or the domain name where the resource is located,
and the third part (optional) defines the page to retrieve. For example, the two
URLs below point to two different files at the domain name tridium.com. The
first specifies a document file that can be fetched using FTP protocol and the
second specifies a Web page that can be fetched using HTTP protocol.

ftp://www.tridium.com/info.pdf

http://www.tridium.com/index.html

Another less widely used term that relates to global addressing of resources on
the WWW is Uniform Resource Identifier (URI), which is a generic term
referring to all types of names and addresses for objects on the WWW. A URL
is one kind of URI.



42

WWW World Wide Web

The World Wide Web, or Web, is a distributed hypertext-based information
system distributed worldwide on the Internet.

XML eXtensible Markup Language

See Sidebar.

_______________________________

REFERENCES

http://www.webopedia.internet.com/. Mecklermedia Corporation, 20 Ketchum St. Westport, CT. 06880 USA.

http://www.realtime-info.be/. Real-Time Consult, Rue de la Justice, 1070 Brussels (Anderlecht), Belgium.

http://www.sun.com/. Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303 USA.

http://www.jmarshall.com/. © 1997 James Marshall.

http://omg.org/. Framingham Corporate Center, Object Management Group, Inc., 492 Old Connecticut Path
Framingham, MA 01701 U.S.A.

http://fieldbus.net/. Datalapio Oy, P.O. Box 97, 00331 Helsinki, Finland.

http://www.weblogic.com/. BEA WebXpress, 550 California, San Francisco, California 94104.


